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Summary. Wave operator equations associated with the determination of energies 
are generally solved by perturbation methods [1]. However, it is well known that 
for most actual systems the standard Rayleigh-Schr6dinger and Brillouin-Wigner 
series have slow convergence properties. We suggest that one way how to deal with 
this problem is to modify or to renormalize the standard wave equations. For  that 
purpose we introduce new derivative and convergence operators associated with the 
basic Rayleigh-Schr6dinger and Brillouin-Wigner formalisms. Since the direct use 
of these operators would imply difficult operator inversions, we investigate the 
efficiency of various approximations of the derivative operator. It is shown that 
these approximations can overcome convergence difficulties and also open the way 
to systematic derivations of infinite partial summation schemes. Our approach is 
also discussed with respect to the standard diagonalization procedure of Davidson. 
Three simple model systems are investigated numerically. 
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There is a large literature concerning perturbation theory in Quantum Mechanics 
[1]. The standard Rayleigh-Schr6dinger and Brillouin-Wigner perturbation ex- 
pansions are presented in most elementary text books on Quantum Mechanics. 
Starting from a zero-order unperturbed description, wavefunctions and energies 
are expanded by perturbation. It is well known that the convergence properties of 
these series are rather slow. For  many actual applications the series diverge. 
Although powerful methods have been developed for improving the convergence 
properties, such as infinite summations and Pad6 approximants, a general alge- 
braic scheme for systematically improving the perturbation expansions is still 
lacking. The situation is worse in many-body perturbation theory where diagram- 
matic expansions and infinite partial summations to all orders cannot be con- 
sidered as the final development of the theory. 

The aim of this paper is to bring sound foundations and new results on 
perturbation theory. This will be done by introducing new concepts of derivative 
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and convergence  operators which are able to predict and extend the convergence 
properties of the standard Rayleigh-Schr6dinger and Brillouin-Wigner schemes. 
These operators will allow to generalize efficiently the standard perturbation 
schemes in a systematic way. New perturbation-iteration schemes will be presented 
and it will be shown that the exact inversion of these operators leads to quadrat- 
ically converging methods. Obviously, this cannot be done for actual systems since 
the exact inversion o f  these operators would be as difficult as solving the 
Schr6dinger equation. Nevertheless, the methods based on approximate derivative 
and convergence operators are useful and powerful. Some new wave operator 
equations and methods for their solution will be presented. 

The paper is organized as follows. Notation and basic wave operator equations 
are introduced in section 1. The wave operator formalism will be used throughout 
this paper since it can be generalized easily to the theory of effective and interme- 
diate Hamiltonians that will be investigated later. Wave operator equations modi- 
fied by means of exact or approximate derivative operators will be presented in 
section 2. Finally, a numerical illustration will be given in section 3 for three simple 
model systems. 

1 Wave operators equations (Rayleigh-Schr6dinger and Brillouin-Wigner) 

Let us consider the Schr6dinger equation 

HI,P> :El4,>. (1) 
It is convenient to introduce a wave operator f2 which allows to pass from 

a zero-order unperturbed normalized state I O>to the exact solution 1-2] 

I¢,> = ~ 1 o > ,  ~ -  ~Po. (2) 
Po = [0> (01 is the projector associated with the unperturbed state l 0> and 

PoO = Po. (3) 

Hereafter, we will keep the intermediate normalization. For an extended study of 
stationary perturbation theory outside the intermediate normalization see refer- 
ence [-3]. The wave operator can be split into Po and the reduced wave operator X 

t2 = (Po + Qo)f2 = Po + X, (4) 

where Qo = 1 - Po is the projector associated with the orthogonal complement. 
Using (2) and (3) the Schr6dinger equation (1) can be transformed into the two 
basic wave operator equations [4, 5] 

H a  = ~ H O ,  (5) 

H f 2  = El2, (6) 

where the exact energy is given by 

E = <OlnfJlO> = (OIH(1 + x)10>. (7) 

Expressions (5) and (6) are the starting points for obtaining the standard 
Rayleigh-Schr6dinger (RS) and Brillouin-Wigner (BW) expansions. Hereafter it 
will be assumed that the Hamiltonian is partitioned into an unperturbed Hamil- 
tonian H0 and a perturbation V: 

H = Ho + V. (8) 
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Multiplying both sides of (5) by Qo and Po and using (4) leads to 

Qo(1 - X)H(1 + X ) P o  = O. 
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(9) 

Ray le igh-  Sehrbdinger expansion 

Expression (9) can be transformed into the perturbation expression [-4] 

Qo X = - -  (1 -- X) V(1 + X ) P o ,  (10) 
Eo -- Ho 

where Eo = (0]Ho [0) is the zero-order unperturbed energy. The wave operator 
X is obtained in the RS approach by iterative solution of Eq. (10). Starting from 
X = 0 one easily obtains 

(20 Qo (20 (20 
X - Eo -- H~o V P o +  Eo _ H~o V E o  - H~o VPo (Eo - Ho) 2 VPoVPo + "'" 

(11) 

Bril louin- Wigner expansion 

Multiplying both sides of equation (6) by Qo and using (4) and (8) we get the 
operator equation 

Oo 
X -  - -  V(1 + X ) P o .  (12) 

E -- Ho 

As above, the perturbation expression for X is easily obtained 

Qo Qo Qo 
X - - -  VPo + V VPo + ... (13) 

E - H o  E - H o  E - H o  

In the next section, the operator equations (10) and (12) will be modified to 
obtain better convergence properties by introducing derivative and convergence 
operators. 

2 Modified wave operator equations 

It is convenient to write the two basic Bloch-like equations (10) and (12) in the 
unique form 

where 

f ( X )  - - -  

in the RS approach and 

X = f(X),  (14) 

Qo 
Eo -- Ho 

(1 -- X ) V ( 1  + X ) P o  (15) 

Qo 
f ( X ) - -  - -  V(1 + X ) P o  

E - -  Ho 

for the BW scheme for which E is given by (7). 

(16) 
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The iterative solution of equation (14) withf(X) given by (15) and (16) provides 
the standard RS and BW perturbation expansions recalled in Sect. 1. It is well 
known that these methods often converge very slowly, even not linearly. Although 
expression (14) is rather formal, it has the advantage that, beyond the usual 
perturbation expansions reviewed in section 1, it suggests more powerful methods 
for determining X. In order to reduce the dependency off(X) on X the equation 
(14) will be modified. This can be done formally by introducing an operator 
A acting in the vectorial space of all operators coupling the subspace spanned by 
the unperturbed space 10) and its orthogonal complement. It is assumed that all 
the vectorial spaces are of finite dimension. Substracting the identity A X  = A X  
from both sides of (14) gives 

(1 - A)X = f -  AX (17) 

and 

1 
X - 1 - A ( f -  AX) .  (18) 

H e r e a f t e r f o r f ( X )  we will use without distinction. The modified (renormalized) 
wave equation (18) is the fundamental equation of this paper. Up to now the 
operator A has not been defined. For reasons that will be given below we call it 
the derivative operator. It was stated only that it must reduce as much as possible 
the dependency on X of the right-hand side of Eq. (18). Many useful expressions of 
A are possible related to the Newton-Raphson scheme. 

Newton-Raphson  Derivative Operator 

Since the iterative method of resolution of equation (14) which provides the RS and 
BW-like expansions converge slowly, at best linearly, the next step is to look for 
methods which converge quadratically or at least quasi-quadratically. For that 
purpose, Eq. (14) is linearized in the neighborhood of X 

X + A X  = f ( X  + AX) ,  

=f (X)  + A A X  + ... (19) 

A X  denotes a small variation of X, and A is a linear operator (superoperator) 
acting in the vectorial space of all operators coupling the subspace spanned by the 
unperturbed space [0} and its orthogonal complement. A generalizes the concept 
of derivative of an ordinary algebraic function f ( x ) .  This operator so called 
derivative operator issuing fromf(X) will play a central role in investigation of the 
convergence properties of perturbation series and will provide more efficient 
schemes for solving Eq. (14). The two operators associated with the RS and BW 
formalisms can easily be derived from expressions (15) and (16). Some elementary 
algebraic calculations lead to 

A -  Qo 
Eo -- Ho 

and 

- - [ ( 1  - X ) V -  (0] V(1 + x)10>]Qo (20) 

Qo 
A - - -  (1 - f ) V Q o  

E - Ho 
(21) 
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for the RS and BW schemes, respectively. To our knowledge, the two above 
expressions do not seem to have been previously reported. Neglecting the higher 
order terms in (19) one gets 

1 
A X - 1 ~  (X - f) .  (22) 

With (22) the equation (14) can be transformed 

1 
X =  X + A X =  X -  I ~ ( X - f )  (23) 

and can also be put down in the form 

1 
X - 1 - A ( f -  A X ) .  (24) 

This expression (24) of X is of the form anticipated by (18), the derivative 
operator A being now defined by (20) and (21) for the RS and BW formalisms, 
respectively. Since in the solution of the wave operator equations, the derivative 
operator A plays the same role as the derivative i f ( x )  associated with the 
Newton-Raphson solution of the ordinary algebraic equation x = f ( x ) ,  the conver- 
gence properties associated with the iterative solution of Eq. (24) can be discussed 
in terms of the eigenvalues of A. If their moduli 121 are small with respect to one, the 
RS and BW perturbation series will converge very fast. However, convergence 
difficulties can be expected for 121 --- 1. Note that if we stay within a perturbative 
approach, the exact derivative operators (20) and (21) are identical up to the first 
order 

Q0 
A - - -  VQo. (25) 

Eo - Ho 

Eigenvalues and eigenvectors of A can be expressed by the equation 

Qo 
g 0 - H 0 

VQo I q~) = 21 ~b), (26) 

which can be transformed into 

(27) 

It results from the above equations that considerable convergence difficulties will 
appear when 2 ~ 1. In this case, Eq. (27) shows that eigenstates I q5 ) have energies 
close to the energy of the exact solution IV). Thus the eigenvectors belonging to 
the outer space could strongly mix up with the unperturbed state ]0). If Eo is the 
lowest unperturbed eigenvalue of Ho, A can be transformed into a hermitian 
operator by a similiarity transformation 

Qo Qo 
(28) 

The above operator has the same eigenvalues as A given by (25). 
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In the following, it is convenient to define a convergence operator by 

1 
C - 1 - A" (29) 

As A, the convergence operator C is an exact operator (superoperator) acting in 
the vectorial space of all operators coupling the unperturbed state [ 0 )  to the outer 
(complementary) subspace. 

Expressions (22) and (23) can be written as 

A X  = - C ( X  - f ) ,  (30) 

X = X -  C ( X - f ) .  (31) 

The iterative solution of Eqs. (30) and (31) defines a quadratically convergent 
Newton-Raphson procedure. If X ( " ) , f  ("), A ("), C (") are the values of X, f A, C 
obtained at the nth iteration, the new value of X at iteration n + 1 is given by 

X (.+1) = X ( . ) _  C( . ) (X  (.) - f ( " ) )  (32) 

and 

1 
X ( . +  1) _ (f(") - A(")X(")). (33) 

1 - A (") 

The iterative solution of (33) is not generally very useful since the inversion of 
1 - A would be as difficult as solving the Schr6dinger equation. Note that quad- 
ratic convergence can only be obtained if operators A are the exact derivative 
operators given by expressions (20) and (21) for the RS and BW formalisms, 
respectively. However, the equations (32) and (33) have a larger validity. They are 
exact equations in which A and C can be a priori any linear operator. For that 
reason, they will be good starting expressions for derivating approximate 
Newton-Raphson methods. There are many ways to define approximate 
Newton-Raphson methods. One may, for example, use simplified expressions of 
A that can easily be inverted. One can also use a polynomial approximation of the 
convergence operator while keeping exact expressions of A. This last approach will 
now be presented since it provides a hierarchy of procedures that generalize the 
standard diagonalization of Davidson. 

Polynomia l  approx imat ion  o f  1/1 - A 

The convergence operator defined by (29) is approximated by a polynomial C ( A )  

1 - A ~- C ( A )  = ckA k. (34) 
k = O  

Hereafter we will use systematically the notation C ( A )  for a polynomial 
approximation of the convergence operator C. Expressions (30) and (31) can now 
be rewritten as 

A X  = -- C ( A ) ( X  - f ) ,  (35) 

X = X - C ( A ) ( X  - f ) .  (36) 
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It is useful to define a convergence polynomial by 

P(A) = 1 - (1 - A)C(A) (37) 

and to express C(A) as a function of P(A) 

1 - P(A) (38) 
C ( A ) -  1 - A 

Replacing in (36) C(A) by expression (38) leads to the new modified wave operator 
equation 

X - 1 - A ( f -  AX)  + (X - f ) .  (39) 

The comparison of equations (24) and (39) shows that the right-hand side of (39) 
contains an additional term proportional to P(A). Since A is assumed to be an 
exact Newton-Raphson derivative operator, P(A) must have eigenvalues as close 
as possible to zero. The higher the degree of the polynomial P(A), the smaller will 
be the X-dependency of the right-hand side of (39) and the better will be the 
convergence of the series arising from the iterative solution of this equation. 
Obviously the crudest approximation is to take for C (A) a zero-degree polynomial, 
i.e. to approximate the convergence operator by a constant. We will see in the next 
paragraph that this approximation, within the BW formalism, is identical to the 
diagonalization method of Davidson. 

Comparison with the Davidson method 

If the polynomial C(A) is reduced to a constant, equation (30) indicates that the 
vectorial subspace, in which H is to be diagonalized, is augmented at each step of 
the iterative process by the vector 

[A0)  = (X - f ) [ O ) .  (40) 

If we work within the Brillouin-Wigner approach, f i s  given by (16), and (40) can be 
written as 

Oo 
I A 0 )  = [X - -  V(1 + X)]IO> 

E -- Ho 

(20 
- -  [ ( E - -  Ho)X-- V(1 + X ) ] O )  
E -- Ho 

Qo 
- -  ( E  - H ) ( X  + Po)lO) 
E - Ho 

Oo 
- -  (E --  H ) [ O ) .  (41) 
E -- Ho 

The expression (41) of lA$)  is identical to the vector q in Ref. [6, p. 108-109]. 
Thus the method presented in this paper is a generalization of the Davidson 
method which corresponds to the zero-order approximation of C, i.e. to poly- 
nomial C(A) of the degree n = 0. The Davidson method is especially efficient when 
all the eigenvalues of A are typically within the range [ - 0.8, 0.8], but convergence 
polynomial of higher order are required when the range of the eigenvalues of A is 
more extended. This will be illustrated by the last numerical application in Sect. 3. 
An advantage of our approach is that the whole methodology is not associated 
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with symmetric or hermitian operators. In the Davidson scheme, the residual 
vector which improves the wavefunction at each iteration is an approximate 
Newton-Raphson correction derived from the minimization of the Rayleigh quo- 
tient. In our wave operator approach we emphasize the role of the wavefunction 
instead of the energy. The Newton-Raphson scheme arises naturally from the 
initial wave operator equation. We have considered the two most basic RS and BW 
schemes but other modified or partially renormalized equations could be useful as 
it was done in determination of relativistic regular two-component Hamiltonians 
I-7, 8]. An advantage of the derivation of exact or approximate Newton-Raphson 
schemes from wave operators is that the whole formalism applies independently of 
the nature of the matrix to be diagonalized that can be real non-symmetrical or 
even non-hermitian as in Floquet representations using optical potentials for the 
solution of the time-dependent Schr6dinger equation [9, 10]. 

To demonstrate how our algebraic approach works three simple model exam- 
ples are shown in the last section. 

3 Numerical illustration 

Three simple models are presented to illustrate the general scheme presented 
above. We will show on the simplest two-level system how the passage from the RS 
to the BW scheme can be interpreted in terms of renormalization. The second 
example of N non-interacting hydrogen molecules will give an idea of the efficiency 
of the polynomial approximation presented in Sect. 2. Finally, in the last example 
a comparison with the Davidson method will be done. 

1 Two-level system 

Let us consider the two-level Hamiltonian 

H = [1><1 r + ~1-10><11-4-[l><Oll, (42) 

where 2 is a perturbation parameter. The matrix representation of H in the basis of 
the two unperturbed states is given in Fig. 2a. The advantage of this simple model 
is that the complementary space spanned by I1> is one-dimensional. It allows 
a simple algebraic discussion since the wave operator equations are reduced to 
ordinary algebraic equations. The RS and BW functions are given in Appendix A. 
The functions fRS and fBw given by A2 and A4 appear as a particular case of the 
general operator expressions (15) and (16). Then the derivativesf~s and f~w given 
by (A6) and (A7) are particular cases of the derivative operators (20) and (21). The 

I f'l / 

Fig. 1. Graphical representation of the Rayleigh-Schr6dinger 
(RS) and Brillouin-Wigner (BW) derivatives fRs and fBw given by 
(A9) and (A10) of Appendix A. The RS iterative scheme of case a) 
converges up to 2 ,~ 0.9 whereas the BW scheme of case b) is 
always convergent since If~wl<l. 
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graphical representation offl{s and f~w given in Fig. 1 displays the convergence 
properties of the RS and BW methods. 

Since the iterative solution of an ordinary algebraic equation x = f(x) converges 
when If'(x)l(1, Fig. 1 shows that the RS scheme converges for 2 up to 2 ~ 0.9 
whereas the convergence of the BW scheme is assured for any value of 2. The 
two-level system is obviously far from actual applications. We have presented 
the above elementary model for pedagogical reasons. It illustrates clearly how the 
convergence of perturbation series can be improved by a purely algebraic approach 
of infinite summations derived from the knowledge of exact A derivative operators 
such as those given by (15) and (16). 

2 N non-interacting 1t2 molecules 

The model is briefly presented in appendix B and more details can be found in 
Ref. [11]. The energy of the correlated ground state has been calculated from the 
Har t ree-Fock (HF) wavefunction taken as the zero-order reference state. The 
matrix representation of the Hamiltonian in the basis of the HF, di-, and quadri- 
excited states is given in Fig. 2. 

0 

2 1 0  

2 0 1  

0 2 2  

a b 

" 0 2 2 2 0 0 0 0  

2 1 0 0 2 0 2 0  

2 0 1 0 2 2 0 0  

2 0 0 1 0 2 2 0  

0 2 2 0 2 0 0 2  

0 0 2 2 0 2 0 2  

0 2 0 2 0 0 2 2  

0 0 0 0 2 2 2 3  

e 

Fig. 2. Matrix representation of the 
model Hamiltonian presented in 
Appendix B describing N non- 
interacting H2 molecules. 2 is a 
perturbation parameter: (a) N = 1; 
(b) N = 2; (c) N = 3. 

For  the sake of simplicity, the zero-order HF energy has been taken equal to 
zero and we have also used arbitrary units. To consider a large perturbation, we 
have chosen rather arbitrarily 2 = 0.6 which is a value much greater than for actual 
hydrogen molecules. In all cases the calculations were done by using the perturba- 
tion-iteration scheme given by (33). We have calculated a system made up of eight 
molecules. The calculated energies for the successive iterations are reported in 
Table 1. 

The Brillouin-Wigner series corresponding to the choice C (") = 1 is extremely 
slowly converging. The Newton-Raphson method with the choice C (n) = 1/ 
(1 - A (")) converges with six exact figures in four iterations. The convergence is 
clearly quadratic at the end of the iterative process. Between these two extreme 
situations, the choice of a polynomial convergence operator C(A) leads to inter- 
mediate convergences. For  a polynomial of the fourth order the results are almost 
as good as those given in the last column by the Newton-Raphson procedure. At 
each step of the calculations the best ck coefficients were optimized by minimizing 
the euclidian norm II x - f [I. 
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3 Impurity model 

This model illustrates the efficiency of the derivative operator for obtaining 
solutions which are far from the domain of validity of standard perturbation 
theory. The matrix representation of the impurity Hamiltonian is given in Fig. 3. 

- 0 2 2 2 2  
2 1 # 0 0  
2 # 1 # 0  
2 0 # 1 #  
2 0 0 ~ 1  Fig. 3. Matrix representation of an impurity coupled to the quasi-continuum 

arising from the H/ickel description of a linear polyene. 2 characterizes the 
coupling with the quasi-continuum. 4t~ is the width of the Hfickel band. 

The parameter 2 measures the strength of the coupling between the impurity 
and the outer space and the parameter # measures the interaction between two 
neighbouring states in the outer space. It is to be noted that, for this system, the 
matrix representation of the zero-order derivative operator A, given by expression 
(25), is identical to the H/ickel matrix for a linear polyene [12]. Therefore the 
eigenvalues of A are known to be within the range [1 - 2#, 1 + 2#]. Thus, it is to 
be expected that the standard perturbation series and the method of Davidson will 
be efficient for # < 0.5. This has been checked numerically. Beyond # = 0.5, the 
functional space generated at each iteration by the Davidson method is useless. For 
the value # = 0.6, the iterative process does not converge towards the exact value 
E =  -0 .00161 corresponding to the normalized impurity state SO)=0 .88  
10) + ... At the 50th iteration, the Davidson procedure gives the value - 0.1905 
which is not related to the impurity level and is close to the lowest energy solution 
E = - 0.1976. The usefulness of the derivative operator A is illustrated in Table 2. 

Table 2. Impurity energy obtained by the iterative solution 
of Eq. (33). A(exact) and A(zero-order) are given by (21) and 
(25), respectively. The matrix representation of the impurity 
model is given in Fig. 3. Calculations were done for a matrix 
of order 50 with 2 = 0.005 and/1 = 0.6. The exact figures are 
underlined (arbitrary units) 

Iteration A (exact) A (zero-order) 

0 -0.0025 -0.0025 
1 -0.00!348 --0.00!347 
2 - 0.001609 -- 0.001609 
3 -0.001612 -0.0016....!3 
4 - 0.001612 

The use of the perturbation-iteration scheme generated by (33) with, succes- 
sively, exact and approximate operators A, leads also to the exact impurity level 
in a few iterations. This solution can also be obtained within the polynomial 
approximation described in Sect. 2 and numerically illustrated in Table 2 for the 
model system of N non-interacting H2 molecules. 
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Conclusion 

This paper has been devoted to the presentation of a new general scheme systemati- 
cally improving the convergence properties of perturbation series. This has been 
done by transforming the standard Rayleigh and Brillouin-Wigner wave equations 
by means of derivative and convergence operators which were given explicitly. The 
concept of derivative operator generalizes the concept of derivative of an ordinary 
algebraic function. The advantage of our approach is that it allows to discuss the 
convergence problems in terms of well defined Newton-Raphson exact operators 
that can be approximated in many ways providing, for example, efficient infinite 
summation schemes. From a practical point of view, we have established the 
relation between our approach and the diagonalization procedure of Davidson. 
Our method reduces to the Davidson method when the derivative operator is taken 
equal to zero. Another advantage of our approach is that it is not derived from 
a variational approach based on the Rayleigh quotient, but from the New- 
ton-Raphson method applied to wave operator equations. This means that our 
formalism has the same efficiency for both the hermitian and nonhermitian Hamil- 
tonians. Finally, the method can easily be extended to the simultaneous determina- 
tion of few eigenstates which is relevant to the theory of effective Hamiltonians. 
Recent progress have already been made in this domain in the determination of 
regular two-component relativistic Hamiltonians [8]. Other investigations are 
in progress concerning the convergence properties of effective and intermediate 
Hamiltonians that will be published in forthcoming papers. 

Appendix A 

In the basis of the two unperturbed states [ O) and 11) the exact Hamiltonian of 
a two-state system is given by 

H = [1)(11 + 2(10)(11 + [1)(01). (A1) 

2 is a perturbation parameter. For this simple model Hamiltonian the complement- 
ary space spanned by [ 1) is one-dimensional andf (X)  given by (15) is reduced then 
to an ordinary algebraic expression f(x) depending on a scalar variable x 

fRS = )-( x2 -- 1) (A2) 

and the Bloch-like equation (14) can be written as 

X = •(X 2 -- 1). (A3) 

In the Brillouin-Wigner (BW) case Eq. (16) leads to 

2 
fBw - 1 - 2x (A4) 

and the corresponding Bloch-like expression is 

2 
x - 1 - 2x" (A5) 

The convergence of the iterative solution of (A3) is governed by the value of the 
derivative off(x)  

f~s = 22x, (A6) 
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22 

f~w = (1 - 2x) 2' (A7) 

in the RS and BW cases, respectively. Since the relevant exact solution of (A3) 
or (A5) is 

1 - ~/1 + 422 
x = (A8) 

22 

at convergence the derivatives (A6) and (A7) have the values 

fl{s = 1 -- x f l  + 422 

and 

422 
f ~ w -  

(1 + x//1 + 422) 2. 

(A9) 

(A10) 

Appendix B 

The model of N non-interacting molecules is presented and investigated in refer- 
ence [11]. Each molecule has only one occupied self consistent field (SCF) molec- 
ular orbital (MO) a and, for simplicity, only one non-occupied virtual MO o-* is 
considered per subsystem. The Hart ree-Fock ground state can be written as 

N 
[0} = 1~ a+a+ [vacuum). (B1) 

p=l  

+ and + ap a~ are the creation operators of an electron in a o- orbital on site p with 
a spin e or/3. The full configuration interaction (CI) implies di-, quadri-, ... 2N- 
excited determinants. For  N hydrogen molecules the size of the full CI is 2 N. Figure 
2 shows the matrix representation for N = 1, 2, 3. 2 is a perturbation parameter 
proportional to the exchange integral associated with the a and a* orbitals. 

The correlation energy per molecule, in arbitrary units, is given by 

E . . . .  : ½ (1 - ~/1 + 422). (B2) 

For  the N non-interacting molecules the total correlation energy is 

E . . . .  -~ -  N½(1 - x/1 + 422). 

The above energy is identical to the total energy since the Hart ree-Fock energy 
is taken to be zero. For  more details and a study of the size dependence of 
delocalized treatments of the correlation problem see Ref. [11]. 
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